Indexed by:
Abstract:
This paper is concerned with the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems with linearly degenerate characteristic fields. On the basis of the existence result for the global classical solution, we prove that when t tends to the infinity, the solution approaches a combination of C1 traveling wave solutions, provided that the C1 norm and the BV norm of the initial data are bounded but possibly large. In contrast to former results obtained by Liu and Zhou [J. Liu, Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems, Math. Methods Appl. Sci. 30 (2007) 479500], ours do not require their assumption that the system is rich in the sense of Serre. Applications include that to the one-dimensional BornInfeld system arising in string theory and high energy physics. © 2010 Elsevier Ltd. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Nonlinear Analysis, Theory, Methods and Applications
ISSN: 0362-546X
Year: 2010
Issue: 3
Volume: 73
Page: 600-613
1 . 2 7 9
JCR@2010
1 . 3 0 0
JCR@2023
JCR Journal Grade:1
Cited Count:
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: