Indexed by:
Abstract:
Traditional slurry-based electrodes consist of heavy current collectors and electroactive materials with a low weight percentage, which inevitably increase the total weight and cost of lithium-ion batteries (LIBs). Consequently, the development of low-cost, lightweight, flexible and binder-free electrodes for LIBs is highly desirable but also greatly challenging. In this work, we report the synthesis of small ZnO nanoparticles uniformly embedded in N-doped carbon (NC) nanoplate arrays (NPAs) tightly grown on a N-doped carbon paper (NCP) substrate (ZnO/NC NPAs@NCP) through a facile metal-organic framework-engaged strategy. This electrode design not only avoids the utilisation of insulating polymer binders but also offers other advantages, including large electrode/electrolyte contact areas, abundant electroactive sites, good wettability of the electrolyte, fast electron/ion transport and efficient volume accommodation. Notably, the freestanding ZnO/NC NPAs@NCP electrode displays a high reversible capacity of 610 mA h g(-1) (based on the mass of entire electrode) at a current density of 100 mA g(-1) for 50 cycles and excellent long-term cycling stability (363 mA h g(-1) at 500 mA g(-1) for 200 cycles). Furthermore, a full cell employing ZnO/NC NPAs@NCP as the anode and commercial LiFePO4 as the cathode is constructed, indicating the feasibility for practical application. Moreover, an analysis of the electrode kinetics confirms the favourable lithium-ion storage kinetics within the ZnO/NC NPAs@NCP electrode. The present work could provide a new approach to develop low-cost, lightweight and flexible electrodes for advanced energy storage.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CERAMICS INTERNATIONAL
ISSN: 0272-8842
Year: 2020
Issue: 11
Volume: 46
Page: 17767-17775
4 . 5 2 7
JCR@2020
5 . 1 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:196
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: