Indexed by:
Abstract:
A parameterized design of universal motion controller is proposed in discrete-time domain using composite nonlinear control approach for high-performance servo mechanisms in industrial automation. First, the model of servo mechanisms is converted into discrete-time state-space form, and a linear control law is designed, consisting of state feedback, reference feed-forward and disturbance compensation. Next, a nonlinear control law is constructed to smoothly modulate the closed-loop damping as the system output approaches the reference. To estimate the unmeasurable velocity and disturbance, a reduced-order extended-state observer is adopted. The final controller is a combination of the above three parts and is fully parameterized in some fundamental tuning parameters. The controller was applied to a permanent magnet synchronous motor (PMSM) drive, which usually serves as the actuator for high-performance motion control systems. After MATLAB simulation, experimental test using a digital signal processing board was conducted, to verify the effectiveness of the proposed design.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING
ISSN: 0736-5845
Year: 2020
Volume: 64
5 . 6 6 6
JCR@2020
9 . 1 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: