Indexed by:
Abstract:
Modulation of photoinduced charge separation/migration and construction of controllable charge transfer pathway over photoelectrodes have been attracting enduring interest in semiconductor-based photoelectrochemical (PEC) cells but suffer from sluggish charge transport kinetics. Here, we report a general approach to fabricate NP-TNTAs/(TMCs QDs/PSS)(n) (X = Te, Se, s) photoanodes via a facile and green electrostatic layer-by-layer (LbL) self-assembly strategy, for which transition-metal chalcogenides quantum dots (TMCs QDs) [CdX (X = Se, Te, S)] and poly(sodium 4-styrenesulfonate) (PSS) were periodically deposited on the nanoporous TiO2 nanotube arrays (NP-TNTAs) via substantial electrostatic force, resulting in the continuous charge transfer pathway. NP-TNTAs/(TMCs QDs/PSS)(n) photoanodes demonstrate significantly enhanced solar-driven photoelectrochemical (PEC) water oxidation activities, relative to NP-TNTAs and TMCs QDs under visible and simulated sunlight irradiation, predominantly because of the suitable energy level configuration between NP-TNTAs and TMCs QDs, unique integration mode, and high-speed interfacial charge separation rate endowed by LbL assembly. The ultrathin PSS intermediate layer functions as "molecule glue" for pinpoint and uniform self-assembly of TMCs QDs on the framework of NP-TNTAs and photosensitization effect of TMCs QDs triggers the unidirectional charge transfer cascade, synergistically boosting the charge separation/transfer efficiency. Our work offers an efficacious approach to craft multilayered photoelectrodes and spur further interest in finely tuning the spatial charge flow in PEC cell for solar-to-hydrogen conversion.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INORGANIC CHEMISTRY
ISSN: 0020-1669
Year: 2020
Issue: 10
Volume: 59
Page: 7325-7334
5 . 1 6 5
JCR@2020
4 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 19
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: