Indexed by:
Abstract:
Finely tuning the charge transfer constitutes a central challenge in photocatalysis, yet exquisite control of the directional charge transfer to the target reactive sites is hindered by the rapid charge recombination. Herein, dual separated charge transport channels were fabricated in a one-dimensional transition-metal chalcogenide (TMC)-based system via an elaborate layer-bylayer (LbL) self-assembly approach, for which oppositely charged metal-ion-coordinated branched polyethylenimine (BPEI) and MoS2 quantum dots (QDs) were alternately integrated to fabricate the multilayered TMC@(BPEI/MoS2 QDs)(n) heterostructures with controllable interfaces. Photocatalytic hydrogen generation performances of such ternary heterostructures under visible light irradiation were evaluated, which unravels that the BPEI layer not only behaves as "molecule glue" to enable the electrostatic LbL assembly with MoS2 QDs in an alternate stacking fashion on the TMC frameworks but also acts as a unidirectional hole-transfer channel. More significantly, transition-metal ions (Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) coordinated on the outmost BPEI layer are able to function as interfacial electron transfer mediators for accelerating the interfacial cascade electron transport efficiency. These simultaneously constructed dual high-speed electron and hole-transfer channels are beneficial for boosting the charge separation and enhancing the photocatalytic hydrogen evolution performances.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2020
Issue: 4
Volume: 12
Page: 4373-4384
9 . 2 2 9
JCR@2020
8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:196
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 57
SCOPUS Cited Count: 58
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: