Indexed by:
Abstract:
Mobile devices usually mount a depth sensor to resolve ill-posed problems, like salient object detection on cluttered background. The main barrier of exploring RGBD data is to handle the information from two different modalities. To cope with this problem, in this paper, we propose a boundary-aware cross-modal fusion network for RGBD salient object detection. In particular, to enhance the fusion of color and depth features, we present a cross-modal feature sampling module to balance the contribution of the RGB and depth features based on the statistics of their channel values. In addition, in our multi-scale dense fusion network architecture, we not only incorporate edge-sensitive losses to preserve the boundary of the detected salient region, but also refine its structure by merging the estimated saliency maps of different scales. We accomplish the multi-scale saliency map merging using two alternative methods which produce refined saliency maps via per-pixel weighted combination and an encoder-decoder network. Extensive experimental evaluations demonstrate that our proposed framework can achieve the state-of-the-art performance on several public RGBD-based datasets.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN: 1057-7149
Year: 2020
Volume: 29
Page: 9496-9507
1 0 . 8 5 6
JCR@2020
1 0 . 8 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: