Indexed by:
Abstract:
An easy-prepared adsorbent with high stable and good dispersibility is especially valuable for the development of magnetic solid-phase extraction (MSPE) techniques. In this study, magnetic nitrogen-doped carbon nanotube cages (N-CNTCs) were synthesized via direct carbonization of cobalt (II)-containing metal-organic frameworks. During carbonization, cobalt ions inside the MOFs were converted into magnetic functional nanoparticles of N-CNTCs. Simultaneously, large amounts of nitrogen, originating from the organic ligands, were doped into the carbon framework. This unique structure gave the N-CNTCs excellent chemical stability, high affinity, and good dispersibility. The synthesized magnetic N-CNTCs were then used for MSPE of okadaic acid (OA) from aquatic samples. A simple, efficient, and sensitive method for detecting and quantitating OA was developed by combining the above sample pretreatment technique with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The resulting method boasts a linear dynamic range of 3.0-1000.0 pg mL(-1) with good linearity (R-2 >= 0.9994). The limit of detection (LOD) and limit of quantification (LOQ) were 1.3 pg mL(-1) and 3.0 pg mL(-1), respectively. Several shellfish and seafood samples were analyzed using the developed method, showing satisfactory recoveries (82.0-107.0%) and relative standard deviations (<4.5%). The developed method was also used to investigate the OA distribution in crab tissues. Our results demonstrate that magnetic N-CNTCs are promising adsorbents for providing reliable support for the early warning and tracing to the source of algae toxins. (C) 2019 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF CHROMATOGRAPHY A
ISSN: 0021-9673
Year: 2019
Volume: 1608
4 . 0 4 9
JCR@2019
3 . 8 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 29
SCOPUS Cited Count: 32
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: