Indexed by:
Abstract:
Membrane performance in separation relies largely on the membrane properties. In this study, metal ions of Cu2+, Co2+, and Fe3+ are used individually as a bridge to develop forward osmosis (FO) membranes via a clean complexation reaction. A metal ion-bridged hydration layer is formed and endows the membrane with a more hydrophilic and smoother surface, higher fouling resistance, and renewability. These improvements make the newly developed membranes superior to the pristine one with better FO performances. The Fe3+-bridged membrane produces water fluxes increased up to 133% (FO mode) and 101% (PRO mode) compared with the pristine membrane against DI water with 0.5-2.0 M MgCl2 as the draw solution. The Fe3+-bridged membrane can efficiently reclaim pharmaceuticals such as trimethoprim and sulfamethoxazole from their dilute solutions with good water permeability and a high pharmaceutical retention, This membrane also exhibits a stronger renewability with water flux restored to 98% of its original value after 20 h experiments in trimethoprim-containing water treatment. This study provides a facile and clean approach to develop highly efficient FO membranes for wastewater reclamation and pharmaceutical enrichment.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2019
Issue: 40
Volume: 11
Page: 37163-37171
8 . 7 5 8
JCR@2019
8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:236
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 39
SCOPUS Cited Count: 41
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: