Indexed by:
Abstract:
Surface modification with advanced nanomaterials (i.e., 2D nanosheets) can be used to strategically tailor membrane properties, providing improved solute permselectivity to targeted molecules. In particular, 2D graphite-like carbon nitride (g-C3N4) nanosheets are a promising alternative for membrane modification, due to their exceptional physicochemical properties and facile synthesis. Herein, high-flux nanofiltration (NF) membranes were designed using bio-inspired co-deposition of hydrophilic g-C3N4 nanosheets with a polydopamine (PDA)/polyethylenimine (PEI) layer onto porous ultrafiltration (UF) substrates. The g-C3N4 nanosheets created additional nanochannels in the PDA/PEI layer to facilitate water molecule transport, resulting in high permeability (28.4 +/- 1.2 L m(-2) h(-1) bar(-1)). Particularly, the bio-inspired layer structure was tailored from the UF to the NF (592 Da) scale by incorporating g-C3N4 nanosheets, thereby breaking through the permeability-selectivity trade-off effect. The tailored NF membrane enabled ultrahigh retention of three reactive dyes (610-630 Da, >99.3%) and low salt rejection (2.9% for NaCl; 7.6% for Na2SO4), significantly promoting the fractionation of dyes and salts for dye desalination. Additionally, the hydrophilic g-C3N4 nanosheets with oxygen plasma treatment further enhanced the wettability of the membrane surfaces, resulting in a superior antifouling performance. This study indicates the promise of g-C3N4 nanosheets to engineer high-flux NF membranes with desirable fractionation performance for sustainable treatment of highly saline wastewater.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ENVIRONMENTAL SCIENCE-NANO
ISSN: 2051-8153
Year: 2019
Issue: 10
Volume: 6
Page: 2958-2967
7 . 6 8 3
JCR@2019
5 . 8 0 0
JCR@2023
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:188
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: