• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Lu, Wenfang (Lu, Wenfang.) [1] | Su, Hua (Su, Hua.) [2] (Scholars:苏华) | Yang, Xin (Yang, Xin.) [3] | Yan, Xiao-Hai (Yan, Xiao-Hai.) [4]

Indexed by:

EI Scopus SCIE

Abstract:

The use of remote sensing observation to estimate subsurface oceanic variables, including subsurface temperature anomaly (STA), is essential for the study of ocean dynamics and climate change. Here we report a new method that combines a pre-clustering process and a neural network (NN) approach to determine the STA using ocean surface temperature, surface height, and surface wind observation data at the global scale. Gridded monthly Argo data were used in the training and validation procedures of the method. Results show that the pre-clustered NN method was better than the same method without clustering, while also outperforming a clustered linear regressor and the random forest method recently reported. The new method was tested over a wide range of time (all months from 2004 to 2010) and depth (down to 1900 m). Overall, our best estimation resulted in an overall root-mean-squared error of 0.41 degrees C and a determination coefficient (R-2) of 0.91 at the 50 m level for all months. The R-2 decreased to 0.51 at 300 m but was still better than the calculation without pre-clustering. This method can be expanded to estimate other key oceanic variables and provide new insights in understanding the climate system.

Keyword:

Clustering Global Ocean Neural network Subsurface and deeper ocean remote sensing Subsurface temperature

Community:

  • [ 1 ] [Lu, Wenfang]Fuzhou Univ, Key Lab Spatial Data Min & Informat Sharing, Natl & Local Joint Engn Res Ctr Satellite Geospat, Minist Educ, Fuzhou, Fujian, Peoples R China
  • [ 2 ] [Su, Hua]Fuzhou Univ, Key Lab Spatial Data Min & Informat Sharing, Natl & Local Joint Engn Res Ctr Satellite Geospat, Minist Educ, Fuzhou, Fujian, Peoples R China
  • [ 3 ] [Yang, Xin]Fuzhou Univ, Key Lab Spatial Data Min & Informat Sharing, Natl & Local Joint Engn Res Ctr Satellite Geospat, Minist Educ, Fuzhou, Fujian, Peoples R China
  • [ 4 ] [Yan, Xiao-Hai]Univ Delaware, Joint Inst Coastal Res & Management, Newark, DE 19716 USA
  • [ 5 ] [Yan, Xiao-Hai]Xiamen Univ, Xiamen, Fujian, Peoples R China
  • [ 6 ] [Yan, Xiao-Hai]Univ Delaware, Coll Earth Ocean & Environm, Ctr Remote Sensing, Newark, DE USA
  • [ 7 ] [Yan, Xiao-Hai]Xiamen Univ, Fujian Engn Res Ctr Ocean Remote Sensing Big Data, Xiamen, Fujian, Peoples R China

Reprint 's Address:

  • 苏华

    [Su, Hua]Fuzhou Univ, Key Lab Spatial Data Min & Informat Sharing, Natl & Local Joint Engn Res Ctr Satellite Geospat, Minist Educ, Fuzhou, Fujian, Peoples R China;;[Yan, Xiao-Hai]Univ Delaware, Joint Inst Coastal Res & Management, Newark, DE 19716 USA;;[Yan, Xiao-Hai]Xiamen Univ, Xiamen, Fujian, Peoples R China

Show more details

Related Keywords:

Source :

REMOTE SENSING OF ENVIRONMENT

ISSN: 0034-4257

Year: 2019

Volume: 229

Page: 213-222

9 . 0 8 5

JCR@2019

1 1 . 1 0 0

JCR@2023

ESI Discipline: GEOSCIENCES;

ESI HC Threshold:137

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 84

SCOPUS Cited Count: 95

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:183/10033258
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1