Indexed by:
Abstract:
Advanced wireless imaging sensors and cloud data storage contribute to video surveillance by enabling the generation of large amounts of video footage every second. Consequently, surveillance videos have become one of the largest sources of unstructured data. Because multi-scenario surveillance videos are often continuously produced, using these videos to detect moving objects is challenging for the conventional moving object detection methods. This paper presents a novel model that harnesses both sparsity and low-rankness with contextual regularization to detect moving objects in multi-scenario surveillance data. In the proposed model, we consider moving objects as a contiguous outlier detection problem through the use of low-rank constraint with contextual regularization, and we construct dedicated backgrounds for multiple scenarios using dictionary learning-based sparse representation, which ensures that our model can be effectively applied to multi-scenario videos. Quantitative and qualitative assessments indicate that the proposed model outperforms existing methods and achieves substantially more robust performance than the other state-of-the-art methods.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN: 1051-8215
Year: 2019
Issue: 4
Volume: 29
Page: 982-995
4 . 1 3 3
JCR@2019
8 . 3 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:150
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 36
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: