Indexed by:
Abstract:
Increase of pectinase activity is especially important in fermentation industry. Understanding of the metabolic mechanisms can find metabolic modulation approach to promote high yield of pectinase. Higher activity of pectinase was detected in DY1 than DY2, two strains of Bacillus licheniformis. GC-MS-based metabolomics identified differential metabolome of DY2 compared with DY1, characterizing the increased TCA cycle and biosynthesis of fatty acids. Elevated activity of pyruvate dehydrogenase (PDH), -ketoglutaric dehydrogenase (KGDH) and succinate dehydrogenase (SDH) showed global elevation of carbon metabolism, which is consistent with the result that lowers glucose in DY2 than DY1. Inhibitors malonate, furfural and triclosan, of PDH, SDH and biosynthesis of fatty acids, promoted pectinase activity, where triclosan increased pectinase activity by 179%. These results indicate that functional metabolomics is an effective approach to understand metabolic mechanisms of fermentation production and provides clues to develop new methods for changing bacterial physiology and production.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
ISSN: 1367-5435
Year: 2018
Issue: 11
Volume: 45
Page: 951-960
2 . 9 9 3
JCR@2018
3 . 2 0 0
JCR@2023
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:212
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: