Indexed by:
Abstract:
The photocatalytic activity for benzene hydroxylation to phenol by hydrogen peroxide has been evaluated using a series of photocatalysts based on defective graphene. The series includes defective graphene containing or not Au and Cu2O nanoparticles. The latter exhibits the highest activity, but a very low phenol yield as a consequence of the occurrence of a large degree of mineralization. A considerable increase in phenol selectivity was achieved by modifying the surface of the Cu2O nanoparticles supported on defective graphene with long-chain alkanethiols. Under the optimal conditions using an octanethiol-modified Cu2O-graphene photocatalyst, a selectivity to phenol of about 64% at 30% benzene conversion was achieved. This remarkable selectivity was proposed to derive from the larger hydrophobicity of the alkanethiol-modified Cu2O-graphene photocatalyst that favors the preferential benzene adsorption versus adsorption of phenol and hydroxybenzenes.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF MATERIALS CHEMISTRY A
ISSN: 2050-7488
Year: 2018
Issue: 40
Volume: 6
Page: 19782-19787
1 0 . 7 3 3
JCR@2018
1 0 . 8 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:284
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: