Indexed by:
Abstract:
The nanocarrier-based delivery system has emerged as a promising candidate for cancer therapy; nevertheless, their quality problems, variation between batches, and carrier-related toxicity issues have restricted their clinical utilization. Compared with traditional carrier-based nanoparticles, carrier-free nanodrug delivery systems preferred to overcome all these drawbacks and will have a wide range of applications in biomedicine and nanotechnology. Herein, we developed a novel carrier-free nanodrug Asp-UA consisted of the classical drug aspirin and the natural plant drug UA via a green and simple approach. The Asp-UA NPs were investigated for shape, particle size, zeta potential, stability, and UV-vis spectroscopy absorption. Cellular uptake study showed that Asp-UA NPs could be easily internalized by HepG2 cells; cellular study demonstrated that Asp-UA NPs held better inhibitory efficiency on tumor metastasis with low toxicity in vitro and in vivo. Moreover, Asp-UA NPs could obviously suppress the progress of cancer metastasis by H22 cells in vivo. Overall, Asp-UA NPs possess a variety of advantages and hold promise to become an alternative to the treatment of cancer metastasis.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
BIOCONJUGATE CHEMISTRY
ISSN: 1043-1802
Year: 2018
Issue: 10
Volume: 29
Page: 3495-3502
4 . 3 4 9
JCR@2018
4 . 0 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: