Indexed by:
Abstract:
The majority of visible-light photocatalysts show very low hydrogen evolution activity in the absence of noble metal co-catalysts due to their fast carrier recombination rate. Metallic interstitial nitrides have been recognized as excellent hydrogen evolution electrocatalysts and therefore are promising alternative co-catalysts for photocatalytic hydrogen production. Herein we report a low-cost, efficient, noble-metal-free visible-light-driven hydrogen evolution photocatalyst composed of Ni3N/g-C3N4 heterostructures. The as-prepared photocatalyst with a Ni3N loading content of 3 wt% shows a high hydrogen evolution rate of 169 mol g(-1) h(-1), which is slightly higher than that of 3 wt% Pt modified g-C3N4 (152.0 mol g(-1) h(-1)). The Ni3N/g-C3N4 photocatalysts also exhibit remarkable photostability for four consecutive cycles of photocatalytic activity tests with a total reaction time of 12 hours. The excellent performance of the Ni3N/g-C3N4 photocatalyst is ascribed to the formation of an optimal number of Ni3N/g-C3N4 heterojunctions that improve photogenerated carrier separation and offer abundant photocatalytically active sites for surface reactions.
Keyword:
Reprint 's Address:
Version:
Source :
DALTON TRANSACTIONS
ISSN: 1477-9226
Year: 2018
Issue: 35
Volume: 47
Page: 12188-12196
4 . 0 5 2
JCR@2018
3 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 60
SCOPUS Cited Count: 60
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: