Indexed by:
Abstract:
Ferroelectrics with internal polar domains has been utilized to enhance photoinduced carriers separation for improving photocatalytic performance by combining them with metal-sulfide semiconductor material. Herein, we construct a new nanohybrid photocatalyst, which combines ferroelectric n anospheres (BaTiO3) and semiconductor nanoparticles (CdS). This hybrid photocatalyst exhibits remarkable hydrogen production activity. The optimum hydrogen production rate based on BaTiO3-CdS composite structure reaches 483 mu mol h(-1) g(-1), which is about 9.7 times greater than that of pristine CdS. The observations indicate that charge carriers generated in CdS, more efficiently migrate to the surface and participate in the redox reactions, influenced by dipolar fields in the ferroelectric domains of BaTiO3. These mechanistic insights will widen our fundamental understanding of charge separation and transfer processes to steer charge flow in a desired and efficient manner.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2018
Volume: 227
Page: 322-329
1 4 . 2 2 9
JCR@2018
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: