Indexed by:
Abstract:
Investigations on the relationships among the chemical structures, morphology and photovoltaic properties of conjugated polymers are crucial in designing high-efficiency semiconducting polymers. Here, two novel copolymers, PIBTO-T and PIBTO-TT, were designed and synthesized to demonstrate the improvement in photovoltaic performance of conjugated polymers by a small change in their chemical structures. PIBTO-TT with thieno[ 3,2-b] thiophene pi-bridges has a more linear backbone conformation, thereby resulting in enhanced intermolecular pi-pi interactions compared to PIBTO-T with thiophene pi-bridges. Benefiting from the closer intermolecular pi-pi stacking, PIBTO-TT: PC71BM exhibits a higher hole mobility than PIBTO-T: PC71BM. Morphological studies reveal that the miscibility of PC71BM in PIBTO-TT is better than that in PIBTO-T. This enhanced miscibility could shorten the distances between adjacent fullerenes and improve electron transportation in the miscible region. Meanwhile, PIBTO-TT: PC71BM blends have larger donor/acceptor interfacial areas than PIBTO-T: PC71BM samples. All these factors contribute to the better photovoltaic performance of PIBTO-TT-based devices. This study clearly shows that the morphological characteristics and photovoltaic properties of conjugated polymers are closely related to their molecular structures, and the manipulation of backbone conformation through p-bridge modulation is a promising molecular engineering approach to improve the photovoltaic properties of conjugated polymers.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF MATERIALS CHEMISTRY C
ISSN: 2050-7526
Year: 2018
Issue: 22
Volume: 6
Page: 5999-6007
6 . 6 4 1
JCR@2018
5 . 7 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:284
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: