Indexed by:
Abstract:
TiO2 nanotube arrays (TiO2 NTAs) decorated with molybdenum disulfide quantum dots (MoS2 QDs) were synthesized by a facile electrodeposition method and used as a composite photocatalyst. MoS2 QDs/TiO2 NTAs showed enhanced photocatalytic activity compared with pristine TiO2 NTAs for solar light-promoted H-2 evolution without adding any sacrificial agents or cocatalysts. The photocatalytic activity was influenced by the amount of MoS2 QDs coated on TiO2 NTAs. The optimal composition showed excellent photocatalytic activity, achieving H-2 evolution rates of 31.36, 5.29, and 1.67 molcm(-2)h(-1) corresponding to ultraviolet (UV, <420nm), visible (Vis, 420nm), and near-infrared (NIR, >760) illumination, respectively. The improved photocatalytic activity was attributed to the decreased bandgap and the surface plasmonic properties of MoS2 QDs/TiO2 NTAs, which promoted electron-hole pair separation and the absorption capacity for Vis and NIR light. This study presents a facile approach for fabricating MoS2 QDs/TiO2 NTA heterostructures for efficient photocatalytic H-2 evolution, which will facilitate the development of designing new photocatalysts for environment and energy applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMSUSCHEM
ISSN: 1864-5631
Year: 2018
Issue: 10
Volume: 11
Page: 1708-1721
7 . 8 0 4
JCR@2018
7 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 80
SCOPUS Cited Count: 80
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: