Indexed by:
Abstract:
Highly efficient heterostructured stannic disulfide/stannic anhydride (SnS2/SnO2) hybrids with different morphologies were fabricated via a two-step hydrothermal method. The composition and morphology of the obtained products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (DRS). The SEM images showed that core-shell structured SnS2/SnO2 nanotubes and hierarchical SnS2 flowers decorated with SnO2 particles were fabricated under different synthetic conditions. The DRS results of the hybrids showed that the absorption edges were gradually redshifted with increasing SnS2 content. In the photo catalytic reduction of chromium (VI) under visible light, the SnS2/SnO2 hybrid prepared with thioacetamide addition of 0.60 g exhibited the best photocatalytic activity, which was approximately 6.8 times higher than that of pure SnS2. This increase in the reduction performance might be ascribed to the strengthened absorption of visible light, the rapid interfacial charge transfer and the promoted charge separation efficiency. Photocurrent- response measurements, electrochemical impedance spectroscopy, and photoluminescence emission tests confirmed the faster charge transfer and efficient charge separation over the heterostructured SnS2/SnO2 hybrids. Lastly, a photocatalytic reduction mechanism for chromium (VI) over SnS2/SnO2 hybrids was proposed. (C) 2018 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2018
Volume: 518
Page: 298-306
6 . 3 6 1
JCR@2018
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: