• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Wang, Shiping (Wang, Shiping.) [1] (Scholars:王石平) | Zhu, William (Zhu, William.) [2]

Indexed by:

EI Scopus SCIE

Abstract:

High dimensionality is quite commonly encountered in data mining problems, and hence dimensionality reduction becomes an important task in order to improve the efficiency of learning algorithms. As a widely used technique of dimensionality reduction, feature selection is about selecting a feature subset being guided by certain criterion. In this paper, three unsupervised feature selection algorithms are proposed and addressed from the viewpoint of sparse graph embedding learning. First, using the self-characterization of the given data, we view the data themselves as a dictionary, conduct sparse coding and propose the sparsity preserving feature selection (SPFS) algorithm. Second, considering the locality preservation of neighborhoods for the data, we study a special case of the SPFS problem, namely, neighborhood preserving feature selection problem, and come up with a suitable algorithm. Third, we incorporate sparse coding and feature selection into one unified framework, and propose a neighborhood embedding feature selection (NEFS) criterion. Drawing support from nonnegative matrix factorization, the corresponding algorithm for NEFS is presented and its convergence is proved. Finally, the three proposed algorithms are validated with the use of eight publicly available real-world datasets from machine learning repository. Extensive experimental results demonstrate the superiority of the proposed algorithms over four compared state-of-the-art unsupervised feature selection methods.

Keyword:

Feature selection machine learning nonnegative matrix factorization sparse coding unsupervised learning

Community:

  • [ 1 ] [Wang, Shiping]Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent In, Fuzhou 350116, Fujian, Peoples R China
  • [ 2 ] [Zhu, William]Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China

Reprint 's Address:

  • [Zhu, William]Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China

Show more details

Version:

Related Keywords:

Source :

IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS

ISSN: 2168-2216

Year: 2018

Issue: 3

Volume: 48

Page: 329-341

7 . 3 5 1

JCR@2018

8 . 6 0 0

JCR@2023

ESI Discipline: ENGINEERING;

ESI HC Threshold:170

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 90

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:199/10365896
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1