Indexed by:
Abstract:
H3PMo12O40 molecules have been successfully encapsulated in the cavities of MIL-100(Fe) via a facile hydrothermal method (denoted as HPMo@MIL-100(Fe)). A series of characterization has corroborated the insertion of H3PMo12O40 within the cavities of MIL-100(Fe). The resulting HPMo@MIL-100(Fe) nano-composites have exhibited much higher photoactivity than the original-MIL-100(Fe) toward the photocatalytic selective oxidation of benzylic alcohols and the reduction of Cr(VI) under visible light irradiation (lambda >= 420 nm). The higher photoactivity of HPMo@MIL-100(Fe) can be attributed to the integrative effect of enhanced light absorption intensity and more efficient separation of photogenerated electron-hole pairs. The host porous structure of MIL-100(Fe) can achieve a uniform composition with H3PMo12O40, which is significantly important for producing highly reactive dispersed H3PMo12O40 molecules and enhancing the photocatalytic activity of HPMo@MIL-100(Fe) nanocomposites. And the immobilized H3PMo12O40 molecules are more convenient for recycling. Importantly, almost no Fe and Mo ions leach from the MIL-100(Fe) during the reaction, which verifies the photostability of the HPMo@MIL-100(Fe). In addition, possible photocatalytic redox reaction mechanisms have been investigated.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
DALTON TRANSACTIONS
ISSN: 1477-9226
Year: 2015
Issue: 41
Volume: 44
Page: 18227-18236
4 . 1 7 7
JCR@2015
3 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:265
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 121
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: