Indexed by:
Abstract:
We study the ground states of the single- and two-qubit asymmetric Rabi models, in which the qubit-oscillator coupling strengths for the counterrotating-wave and corotating-wave interactions are unequal. We take the transformation method to obtain the approximately analytical ground states for both models and numerically verify its validity for a wide range of parameters under the near-resonance condition. We find that the ground-state energy in either the single- or two-qubit asymmetric Rabi model has an approximately quadratic dependence on the coupling strengths stemming from different contributions of the counterrotating-wave and corotating-wave interactions. For both models, we show that the ground-state energy is mainly contributed by the counterrotating-wave interaction. Interestingly, for the two-qubit asymmetric Rabi model, we find that, with the increase in the coupling strength in the counterrotating-wave or corotating-wave interaction, the two-qubit entanglement first reaches its maximum and then drops to zero. Furthermore, the maximum of the two-qubit entanglement in the two-qubit asymmetric Rabi model can be much larger than that in the two-qubit symmetric Rabi model.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED PHYSICS B-LASERS AND OPTICS
ISSN: 0946-2171
Year: 2014
Issue: 1
Volume: 117
Page: 195-202
1 . 8 5 6
JCR@2014
2 . 0 0 0
JCR@2023
ESI Discipline: PHYSICS;
ESI HC Threshold:213
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: