Indexed by:
Abstract:
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
LINEAR ALGEBRA AND ITS APPLICATIONS
ISSN: 0024-3795
Year: 2014
Volume: 444
Page: 146-151
0 . 9 3 9
JCR@2014
1 . 0 0 0
JCR@2023
ESI Discipline: MATHEMATICS;
ESI HC Threshold:86
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: