Indexed by:
Abstract:
Ca2Nb2O7 (CN) nanopolyhedra with relatively high surface area and small crystallites have been prepared by a microwave-assisted template-free hydrothermal method for the first time. The samples are characterized by powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), N-2-adsorption, and Transmission electron microscopy (TEM). A comparative study on the photocatalytic degradations of methyl orange (MO) in aqueous solution and benzene in gas phase has been carried out between Ca2Nb2O7 nanopolyhedra and TiO2. Results show that the MO and benzene could be effectively degraded and mineralized over the CN samples. Due to the higher photoabsorption performance and concentration of (OH)-O-center dot radicals, TiO2 exhibit a superior photocatalytic activity for the degradation of MO compared with the CN samples. However, the weaker redox ability of the photogenerated hole-electron pairs induces the lower mineralization ratio of MO. Fourier transform infrared (FT-IR) analysis reveals that the photocatalytic active sites of TiO2 have been blocked by stable intermediates, leading to the deactivation of the photocatalyst. In contrast, although the CN samples exhibit a lower photocatalytic degradation rate of MO, they show a much higher mineralization ratio of MO and benzene compared with TiO2. Therefore, the CN samples maintain a clean surface during the photocatalytic process, resulting in a high and stable photocatalytic degradation performance. In addition, water plays a key role in the photocatalytic degradation of organic pollutants. (C) 2012 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CATALYSIS TODAY
ISSN: 0920-5861
Year: 2013
Volume: 201
Page: 175-181
3 . 3 0 9
JCR@2013
5 . 2 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: