Indexed by:
Abstract:
The semiconductor quantum dots (QDs) can be very efficient to tune the response of photocatalyst of TiO2 to visible light. In this study, CdS QDs formed in situ with about 8 nm have been successfully deposited onto the surfaces of TiO2 nanotubes (TNTs) to form TNTs/CdS QDs nanocomposites by use of a simple bifunctional organic linker, thiolactic acid. The diffuse reflectance spectroscopy (DRS) spectra of as prepared samples showed that the absorption edge of the TNTs/CdS composite is extended to visible range, with absorption edge at 530 nm. The photocatalytic activity and stability of TNTs/CdS were also evaluated for the photodegradation of rhodamine B. The results showed that when TNTs/CdS QDs was used, photocatalytic degradation of RhB under visible light irradiation reached 91.6%, higher than 45.4 and 30.5% for P25 and TNTs, respectively. This study indicated that the TNTs/CdS QDs nanocomposites were superior catalysts for photodegradation under visible light irradiation compared with TNTs and P25 samples, which may find wide application as a powerful photocatalyst in environmental field.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF NANOPARTICLE RESEARCH
ISSN: 1388-0764
Year: 2011
Issue: 12
Volume: 13
Page: 6661-6672
3 . 2 8 7
JCR@2011
2 . 1 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 33
SCOPUS Cited Count: 35
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: