Indexed by:
Abstract:
A comprehensive study of transportation features of nitrogen, phosphorous and dissolve oxygen at the sediment-water interface was carried out in near city areas of east Lake Chaohu. Based on the investigation of sediment nutrients analysis and nutrients release incubation experiments, the release potential and release rates of ammonia nitrogen (NH3-N) and soluble reactive phosphorous (SRP) of different sediments were estimated. The distribution characteristics, diffusion fluxes, and consumption rates of dissolved oxygen (DO) at the sediment-water interface of different sediments were studied by using a non-invasive microelectrode analysis system. The results showed the surface sediments in the near city areas of east Lake Chaohu were in severe nitrogen and phosphorous pollution with high total nitrogen (TN) and total phosphorus (TP) loadings. Typical internal releases of NH3-N and SRP were observed from all sediments with the average release rates of 32.44 mg/(m2•d) and 1.25 mg/(m2•d), respectively. The sediments play the role of pollution source rather than the sink for NH3-N and SRP in the study area. Results also showed that all overlying water were at aerobic condition. The average oxygen penetration depth (OPD) and oxygen diffusion flux at sediment-water micro-interfaces reached 5.3 mm and 4.56 mmol/(m2•d) respectively, indicating good DO diffusion ability from the boundary layer to the sediment. The internal release intensity of NH3-N and SRP are influenced by TN/TP contents of the surface sediment as well as the OPD at the sediment-water interface. The release of NH3-N and SRP from sediments could be benefited from the high nitrogen and phosphorous loadings and low OPD and contribute to the eutrophication of the lake. © 2020 by Journal of Lake Sciences.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Journal of Lake Sciences
ISSN: 1003-5427
CN: 32-1331/P
Year: 2020
Issue: 3
Volume: 32
Page: 688-700
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: