Indexed by:
Abstract:
The molecular mechanism of platinum-based drugs in concomitant chemoradiation therapy relies on enhancement of DNA damage in cancer cells, particularly that of detrimental clustered lesions and cross-links induced by the abundant low-energy electrons (LEEs) generated by ionizing radiation. We provide the complete 1-20 eV electron-energy dependence of the yields of all conformational LEE-induced lesions to biological DNA, when it binds to five molecules of the chemotherapeutic drug cisplatin. Recording at 1 eV intervals clearly show that the enhancement of all lesions is particularly intense at the energies of core-excited transient molecular anions (i.e., TMAs at 5, 6, and 10 eV). New TMAs are observed at 14 and 18 eV, only in yield functions of cisplatin-DNA complexes. Enhancements of all lesions by cisplatin are quantified over the 1-20 eV range, where maxima appear at 14 and 18 eV. The most detrimental lesions to cell survival exhibit the highest enhancements by factors of 2-3. Whereas no cluster lesions are induced by electrons of energy © 2020 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Physical Chemistry B
ISSN: 1520-6106
Year: 2020
Issue: 16
Volume: 124
Page: 3315-3325
2 . 9 9 1
JCR@2020
2 . 8 0 0
JCR@2023
ESI HC Threshold:160
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: