Indexed by:
Abstract:
Intelligent Transportation Systems (ITS) research and applications benefit from accurate short-term traffic state forecasting. To improve the forecasting accuracy, this paper proposes a deep learning based multitask learning Gated Recurrent Units (MTL-GRU) with residual mappings. To enhance the performance of the MTL-GRU, feature engineering is introduced to select the most informative features for the forecasting. Then, based on real-world datasets, numerical results show that the MTL-GRU can well estimate traffic flow and speed simultaneously, and performs better than other counterparts. Experiments also show that the deep learning based MTL-GRU model can overpower the bottleneck caused by enlarging training datasets and continue to gain benefits. The results suggest the proposed MTL-GRU model with residual mappings is promising to forecast short-term traffic state. © 2013 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE Access
Year: 2020
Volume: 8
Page: 80707-80715
3 . 3 6 7
JCR@2020
3 . 4 0 0
JCR@2023
ESI HC Threshold:132
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: