Indexed by:
Abstract:
Fabrication of human-like intelligent tactile sensors is an intriguing challenge for developing human-machine interfaces. As inspired by somatosensory signal generation and neuroplasticity-based signal processing, intelligent neuromorphic tactile sensors with learning and memory based on the principle of a triboelectric nanogenerator are demonstrated. The tactile sensors can actively produce signals with various amplitudes on the basis of the history of pressure stimulations because of their capacity to mimic neuromorphic functions of synaptic potentiation and memory. The time over which these tactile sensors can retain the memorized information is alterable, enabling cascaded devices to have a multilevel forgetting process and to memorize a rich amount of information. Furthermore, smart fingers by using the tactile sensors are constructed to record a rich amount of information related to the fingers' current actions and previous actions. This intelligent active tactile sensor can be used as a functional element for artificial intelligence. Copyright © 2019 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
ACS Nano
ISSN: 1936-0851
Year: 2020
Issue: 2
Volume: 14
Page: 1390-1398
1 5 . 8 8 1
JCR@2020
1 5 . 8 0 0
JCR@2023
ESI HC Threshold:196
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 111
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: