Indexed by:
Abstract:
Immunotherapy has revolutionized cancer treatment, but its efficacy is severely hindered by the lack of effective predictors. Herein, we developed a homogeneous, low-volume, efficient, and sensitive exosomal programmed death-ligand 1 (PD-L1, a type of transmembrane protein) quantitation method for cancer diagnosis and immunotherapy response prediction (HOLMES-ExoPD-L1). The method combines a newly evolved aptamer that efficiently binds to PD-L1 with less hindrance by antigen glycosylation than antibody, and homogeneous thermophoresis with a rapid binding kinetic. As a result, HOLMES-ExoPD-L1 is higher in sensitivity, more rapid in reaction time, and easier to operate than existing enzyme-linked immunosorbent assay (ELISA)-based methods. As a consequence of an outstanding improvement of sensitivity, the level of circulating exosomal PD-L1 detected by HOLMES-ExoPD-L1 can effectively distinguish cancer patients from healthy volunteers, and for the first time was found to correlate positively with the metastasis of adenocarcinoma. Overall, HOLMES-ExoPD-L1 brings a fresh approach to exosomal PD-L1 quantitation, offering unprecedented potential for early cancer diagnosis and immunotherapy response prediction. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Keyword:
Reprint 's Address:
Email:
Source :
Angewandte Chemie - International Edition
ISSN: 1433-7851
Year: 2020
Issue: 12
Volume: 59
Page: 4800-4805
1 5 . 3 3 6
JCR@2020
1 6 . 1 0 0
JCR@2023
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 175
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: