Indexed by:
Abstract:
The combination of polyoxoniobates (PONbs) with 3d metal ions, azoles, and organoamines is a general synthetic procedure for making unprecedented PONb metal complex cage materials, including discrete molecular cages and extended cage frameworks. By this method, the first two PONb metal complex cages K4@{[Cu29(OH)7(H2O)2(en)8(trz)21][Nb24O67(OH)2(H2O)3]4} and [Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)} have been made. The former exhibits a huge tetrahedral cage with more than 120 metal centers, which is the largest inorganic–organic hybrid PONb known to date. The later shows a large cubic cage, which can act as building blocks for cage-based extended assembly to form a 3D cage framework {[Cu(en)2]@{[Cu2(trz)2(en)2]6[H10Nb68O188]}}. These materials exhibit visible-light-driven photocatalytic H2 evolution activity and high vapor adsorption capacity. The results hold promise for developing both novel cage materials and largely unexplored inorganic–organic hybrid PONb chemistry. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Keyword:
Reprint 's Address:
Email:
Source :
Angewandte Chemie - International Edition
ISSN: 1433-7851
Year: 2019
Issue: 47
Volume: 58
Page: 16864-16868
1 2 . 9 5 9
JCR@2019
1 6 . 1 0 0
JCR@2023
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: