Indexed by:
Abstract:
Mine tailings-based geopolymers were prepared at ambient temperature. The evolution of their microstructure and the immobilization of lead were studied. Characterizations include measurements in compressive strength, scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and toxicity characteristic leaching procedure (TCLP) tests. With increasing the ratio of metakaolin from 0% to 50%, geopolymer gel in the mine tailings-based geopolymers increased from 33.92% to 79.45%, leading to the compressive strength that increased from 2 to 15.5 MPa. With addition of Pb(NO3)2, a three-stepped changes in the compressive strength and microstructure of the geopolymers were observed. As increasing Pb(NO3)2 dosage from 0% to 6%, geopolymer gel was kept constant, while lead silicate glass increased from 0% to 10.51%, and Si sites in calcium silicate hydrate (CSH) gel decreased from 20.55% to 11.3%. Pb2+ was effectively immobilized in the geopolymers. This study first presents the evolution of geopolymer gel, belite, lead silicate glass, and CSH gel in mine tailings-based geopolymers as the functions of metakaolin and Pb(NO3)2 additions. © 2018 The American Ceramic Society
Keyword:
Reprint 's Address:
Email:
Source :
Journal of the American Ceramic Society
ISSN: 0002-7820
Year: 2019
Issue: 5
Volume: 102
Page: 2451-2461
3 . 5 0 2
JCR@2019
3 . 5 0 0
JCR@2023
ESI HC Threshold:236
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 41
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: