Indexed by:
Abstract:
The active-site structure, reaction mechanism, and product selectivity of the industrially important selective hydrogenation of 1,3-butadiene are investigated using first principles for an emerging single-atom Pd catalyst anchored on graphene. Density functional theory calculations suggest that the mono-π-adsorbed reactant undergoes sequential hydrogenation by Pd-activated H2. Importantly, the high selectivity towards 1-butene is attributed to the post-transition-state dynamics in the second hydrogenation step, which leads exclusively to the desorption of the product. This dynamical event prevails despite the existence of energetically preferred 1-butene adsorption on Pd, which would eventually lead to complete hydrogenation to butane and be thus inconsistent with experimental observations. This insight underscores the importance of dynamics in heterogeneous catalysis, which has so far been underappreciated. © 2018 The Royal Society of Chemistry.
Keyword:
Reprint 's Address:
Email:
Source :
Chemical Science
ISSN: 2041-6520
Year: 2018
Issue: 27
Volume: 9
Page: 5890-5896
9 . 5 5 6
JCR@2018
7 . 6 0 0
JCR@2023
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 59
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: