Indexed by:
Abstract:
Carbon-based catalysts have demonstrated great potential for the aerobic oxidative dehydrogenation reaction (ODH). However, its widespread application is retarded by the unavoidable deactivation owing to the appearance of coking or combustion under ODH conditions. The synthesis and characterization of porous structure of BCN nanosheets as well as their application as a novel catalyst for ODH is reported. Such BCN nanosheets consist of hybridized, randomly distributed domains of h-BN and C phases, where C, B, and N were confirmed to covalent bond in the graphene-like layers. Our studies reveal that BCN exhibits both high activity and selectivity in oxidative dehydrogenation of ethylbenzene to styrene, as well as excellent oxidation resistance. The discovery of such a simple chemical process to synthesize highly active BCN allows the possibility of carbocatalysis to be explored. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Keyword:
Reprint 's Address:
Email:
Source :
Angewandte Chemie - International Edition
ISSN: 1433-7851
Year: 2017
Issue: 28
Volume: 56
Page: 8231-8235
1 2 . 1 0 2
JCR@2017
1 6 . 1 0 0
JCR@2023
ESI HC Threshold:226
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 183
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: