Indexed by:
Abstract:
Graphite-like carbon nitride (g-C3N4) displays strong potential applications in visible-light photocatalytic for water treatment, but its applications are greatly restricted by high recombination probability of photo-generated electron-hole pairs, as well as a weak reduction ability toward the heavy metals. In this work, we reported the synthesis of nZVI-g-C3N4 nano-hybrid with highly efficiency toward the photodegradation of RhB and Cr(VI) under the visible light irradiation. The nZVI nanoparticles can well be immobilized and dispersed on the surface of g-C3N4 nanosheets by a facile borohydride-reduction method. As-synthesized nZVI-g-C3N4 has an improved photocatalytic activity much better than that of the pure g-C3N4, wherein over 92.9% of Cr(VI) and 99.9% of RhB can be removed by using nZVI-g-C3N4. The nZVI particles not only contributes to the reduction and immobilization of Cr(VI), but also accelerates the photocatalytic degradation efficiency of RhB due to a lower recombination rate of photoexcited holes and electrons. Moreover, nZVI-g-C3N4 preserves superior photodegradation efficiency after five experimental cycles. It can be attributed that nZVI-g-C3N4 photocatalyst is chemically stable, and part of nZVI can be recovered by g-C3N4. We believe that, the composite of nZVI-g-C3N4 reported here could provide guidance for the design of efficient and reusable materials to remove both the organic compounds and heavy metal ions from waste waters. © 2016 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Applied Surface Science
ISSN: 0169-4332
Year: 2016
Volume: 386
Page: 451-459
3 . 3 8 7
JCR@2016
6 . 3 0 0
JCR@2023
ESI HC Threshold:324
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 48
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: