Indexed by:
Abstract:
To allow for simultaneous textural engineering and doping of carbon nitride materials with heteroatoms, urea has been polymerized with an ionic liquid. The role of urea is to create a delamination effect during carbon nitride synthesis, whereas ionic liquid functions as texture modifier as well as B/F dopant source. This will result in the rational fabrication of boron- and fluorine-containing 2D carbon nitride nanosheets with enhanced optical harvesting and charge separation capabilities for hydrogen evolution catalysis using visible light. We believe that the innovative modification strategy developed herein can be coupled with the already known modification tools of 2D carbon nitride, thus further developing a new family of light-harvesting 2D platforms for the efficient and sustained utilization of solar radiation for a variety of advanced applications, including CO2 photofixation, organic photosynthesis, and pollutant controls. BuILd your own semi: Simultaneous nanoarchitectual engineering and doping of a robust carbon nitride semiconductor has been demonstrated by a direct co-condensation of urea and an ionic liquid (e.g., [Bmim][BF4]), yielding boron- and fluorine-containing two-dimensional carbon nitride nanosheets with enhanced optical harvesting and charge separation capabilities for hydrogen evolution catalysis with visible light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keyword:
Reprint 's Address:
Email:
Source :
ChemSusChem
ISSN: 1864-5631
Year: 2014
Issue: 6
Volume: 7
Page: 1547-1550
7 . 6 5 7
JCR@2014
7 . 5 0 0
JCR@2023
ESI HC Threshold:268
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 74
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: