• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Lin, Bingyu (Lin, Bingyu.) [1] | Wang, Rong (Wang, Rong.) [2] | Yu, Xiujin (Yu, Xiujin.) [3] | Lin, Jianxin (Lin, Jianxin.) [4] | Xie, Feng (Xie, Feng.) [5] | Wei, Kemei (Wei, Kemei.) [6]

Indexed by:

EI

Abstract:

A series of alumina supported ruthenium catalysts, which prepared by hydrogen treatment or hydrazine reduction, were characterized by N2 adsorption, X-ray diffraction (XRD), X-ray fluorescence (XRF), CO chemisorption, and Temperature-programmed desorption of hydrogen (H2-TPD). In contrast to the samples with conventional hydrogen reduction, there was almost no residual chlorine in the samples using RuCl3 as precursor with hydrazine treatment. Furthermore, the dissolved aluminum could be removed much more easily in basic solution, which led to the higher BET surface and pore volume of hydrazine-reduction catalysts. Therefore, the active phase (Ru metal) would not be contaminated. Three main peaks, which occurred at about 150, 375, and 650 °C, respectively, were observed in the H2-TPD profiles of Ru/Al2O3 catalysts with a high amount of residual chlorine. A new peak of desorption hydrogen centering at 240 °C, which was completely suppressed by the high amount of residual chlorine, might appear in the profiles of the samples with the washing procedure following hydrogen reduction or hydrazine treatment. The peaks with the desorption temperature lower than 500 °C were relative with dissociatively adsorbed hydrogen and spillover hydrogen simultaneity, and the peak at above 500 °C was caused by spillover hydrogen and would be stabilized by hydroxyl groups on alumina surface. © 2008 Springer Science+Business Media, LLC.

Keyword:

Alumina Aluminum oxide Catalyst supports Chlorine Chlorine compounds Hydrazine Hydrogen Ruthenium Ruthenium compounds Temperature programmed desorption

Community:

  • [ 1 ] [Lin, Bingyu]National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian 35002, China
  • [ 2 ] [Wang, Rong]National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian 35002, China
  • [ 3 ] [Yu, Xiujin]National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian 35002, China
  • [ 4 ] [Lin, Jianxin]National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian 35002, China
  • [ 5 ] [Xie, Feng]National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian 35002, China
  • [ 6 ] [Wei, Kemei]National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian 35002, China

Reprint 's Address:

Show more details

Related Keywords:

Source :

Catalysis Letters

ISSN: 1011-372X

Year: 2008

Issue: 3-4

Volume: 124

Page: 178-184

1 . 8 6 7

JCR@2008

2 . 3 0 0

JCR@2023

JCR Journal Grade:2

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:62/10042772
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1