Indexed by:
Abstract:
Variational Retinex model-based methods for low-light image enhancement have been popularly studied in recent years. In this paper, we present an enhanced variational Retinex method for low-light natural image enhancement, based on the initial smoother illumination component with a structure extraction technique. The Bergman splitting algorithm is then introduced to estimate the illuminance component and reflectance component. The de-block processing and illuminance component correction are used for the enhanced reflectance as the ultimate enhanced image. Moreover, the estimated smoother illumination component can make enhanced images preserve edge details. Experimental results with a comparison demonstrate the present variational Retinex method can effectively enhance image quality and maintain image color. © 2020, Springer Nature Switzerland AG.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 0302-9743
Year: 2020
Volume: 12002 LNCS
Page: 408-420
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: