Indexed by:
Abstract:
Ankle rehabilitation exercise therapy mainly includes passive, active, and resistance rehabilitations. Active rehabilitation exercise is highly important during ankle rehabilitation, how to combine the ankle and the rehabilitation robot has elicited considerable research attention. This paper proposed a combination strategy for the ankle and the rehabilitation robot based on a 3D modeling of the ankle and the robot developed individually based on simulation software (AnyBody). By integrating the 3D models of the human body and the robot, setting constraints between the pedal of the robot and the pelma of the human body and the degrees of freedom of the ankle is constrained as 3, a man-machine integration model for ankle active rehabilitation strategy analysis was established. Then, human muscle characteristics were established under the combination of different variables and the range of ankle motion were carried out by the human body active movement with ankle plantar/dorsal flexion motion, this further leads to strategies for ankle active rehabilitation. Finally, this paper designs the driving function for the robot based on Fourier function, and the force condition for the ankle movement during rehabilitation exercise was evaluated from the perspective of biomechanics. This study would provide a fundamental reference for the further formulation of active rehabilitation strategies and the control of rehabilitation robots. © Springer International Publishing AG 2017.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 0302-9743
Year: 2017
Volume: 10462 LNAI
Page: 3-13
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: