Indexed by:
Abstract:
In this paper, we present a consumption pattern recognition system based on SVM. It can produce an optimized classification pattern using SVM algorithm and use the pattern to predict consumer behaviors. In this system, three dimension reduction methods including Principal Component Analysis (PCA), correlation analysis and data cubes are applied to reduce dimension of features and two training methods including Support Vector Machine (SVM) and Support Vector Machine by Increasing Negative Examples (SVM-INE) are utilized to build classifiers. Consumption pattern recognition system can find the consumption habits of specific consumer group which are helpful to well-targeted marketing. Empirical results show that the system can recognize different consumption pattern with high efficiency and accuracy. © 2011 IEEE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Year: 2011
Volume: 1
Page: 79-82
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: