Indexed by:
Abstract:
Structural homologues of vertebrate regulatory peptides found in defensive skin secretions of anuran amphibians often display enhanced bioactivity and receptor binding when compared with endogenous mammalian peptide ligands. Maximakinin, a novel N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the skin venom of a Chinese toad (Bombina maxima), displays such activity enhancement when compared with bradykinin but is additionally highly selective for mammalian arterial smooth muscle bradykinin receptors displaying a 50-fold increase in molar potency in this smooth muscle type. In contrast, a 100-fold decrease in molar potency was observed at bradykinin receptors in intestinal and uterine smooth muscle preparations. Maximakinin has thus evolved as a "smart" defensive weapon in the toad with receptor/tissue selective targeting. Natural selection of amphibian skin venom peptides for antipredator defence, through inter-species delivery by an exogenous secretory mode, produces subtle structural stabilisation modifications that can potentially provide new insights for the design of selectively targeted peptide therapeutics. © 2004 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Regulatory Peptides
ISSN: 0167-0115
Year: 2004
Issue: 1-3
Volume: 121
Page: 65-72
2 . 5 3 1
JCR@2004
1 . 8 1 3
JCR@2015
JCR Journal Grade:2
Cited Count:
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: