Indexed by:
Abstract:
针对滚动轴承故障特征提取 困难的问题,提出了一种广义精细复合多尺度样本熵(GRC-MSE)与流形学习相结合的特征提取方法.利用GRCMSE提取滚动轴承故障特征信息;采用判别式扩散映射分析(DDMA)方法对高维特征进行降维处理;将低维故障特征输入粒子群优化支持向量机多故障分类器中进行故障识别.滚动轴承故障实验分析结果表明:GRCMSE特征提取效果优于多尺度样本熵(MSE)、精细复合多尺度样本熵(RCMSE)和广义多尺度样本熵(GMSE);DDMA降维效果优于等度规映射(Isomap)和局部切空间排列(LTSA)的降维效果;GRCMSE和DDMA相结合后的滚动轴承故障识别精度达到100%.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
中国机械工程
ISSN: 1004-132X
CN: 42-1294/TH
Year: 2020
Issue: 20
Volume: 31
Page: 2463-2471
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: