Indexed by:
Abstract:
YOLOv3作为开源的目标检测网络与同时期目标检测网络相比,在速度和精度上有着明显的优势.由于YOLOv3采用了新型的全卷积网络(FCN)、特征金字塔网络(FPN)和残差网络(ResNet),因此对硬件配置要求较高,导致开发成本过高,不利于工业上的应用普及.在嵌入式平台上普遍使用YOLOv3tiny进行检测,虽然计算量较小,但是检测效果远不如YOLOv3.为了解决在嵌入式平台上YOLOv3检测速度低的问题,提出一种基于YOLOv3的简化版网络,与YOLOv3不同的是,在保留了对特征提取有较大帮助的FCN、FPN以及ResNet的同时,尽可能减少每层的参数量和残差层数,并尝试加入了密集连接网络空间金字塔池化.实验结果表明,该网络的参数量和检测速度大幅优于YOLOv3,且平均精度比YOLOv3tiny在PASCAL VOC2007、2012数据集上有明显的提升.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
激光与光电子学进展
ISSN: 1006-4125
CN: 31-1690/TN
Year: 2020
Issue: 14
Volume: 57
Page: 37-45
0 . 9 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: