Indexed by:
Abstract:
为克服小流域数据资料少,河流溶解氧的非平稳特性及动态变化造成的预测困难,提出结合具有自适应噪声的完整集成经验模态分解(CEEMDAN)和Elman动态神经网络的预测方法.使用CEEMDAN方法对原始溶解氧时序数据进行平稳化处理及降噪,提取溶解氧随时间变化的波动特征、周期特征,以及长期趋势,通过计算样本熵(SE)值,将相似的特征序列合并,以减小误差累积,对合并后的新序列分别采用布谷鸟搜索(CS)算法优化的Elman模型进行预测,将各预测值叠加,得到最终预测结果.实验结果表明:CEEMDAN-SE-CS-Elman方法平均绝对误差(EMA)为0.14;平均绝对百分误差(EMPA)为2.07%;均方根误差(ERMS)为0.24;可决系数(R2)达到0.9516,精度较其他时间序列预测模型有所提高.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
华侨大学学报(自然科学版)
ISSN: 1000-5013
CN: 35-1079/N
Year: 2020
Issue: 5
Volume: 41
Page: 659-666
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: