Indexed by:
Abstract:
The trajectory tracking control of a free-floating space manipulator with joint torque output dead-zone and external disturbance is studied.Dead-zone and external disturbance will affect the control precision and stability of the system.The steady state error caused by external disturbance is reduced by use of the integral variable structure function,and the radial basis function neural network is used to approximate unknown part of the dynamic equation.Then,an integral sliding mode neural network control is proposed.In the scheme,effects due to the unknown slope and boundary of the dead-zone are eliminated by introducing dead-zone and disturbance compensation,and the effects due to unknown supremum of the optimal approximation error are eliminated by the optimal approximation error.The Lyapunov stability analysis proves that the closed-loop control system is stable and the trajectory tracking error converges to a neighborhood of zero.Simulation results show the effectiveness of the control scheme and realize trajectory tracking control of the space manipulator. © 2018, Editorial Office of Chinese Journal of Computational Mechanics. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
计算力学学报
ISSN: 1007-4708
CN: 21-1373/O3
Year: 2018
Issue: 6
Volume: 35
Page: 713-718
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: