Indexed by:
Abstract:
Monoclinic β-Ga2O3 nanosheets hold great potential applications in electronic, optical, and photocatalytic fields. In this study, two-dimensional β-Ga2O3 nanosheets were successfully fabricated through a simple crystalline phase transition from the as-prepared ultrathin γ-Ga2O3 nanosheets. The photocatalytic hydrogen evolution reaction under UV light irradiation was achieved on the two kinds of photocatalysts. However, β-Ga2O3 with a higher crystallinity shows a lower photocatalytic activity in comparison with γ-Ga2O3. The average apparent quantum yield is calculated to be 0.29% for β-Ga2O3 nanosheets and 1.82% for γ-Ga2O3. More efficient separation and transfer rates of photogenerated carriers and larger specific areas were found in γ-Ga2O3. On the basis of the analysis of the structures of γ-Ga2O3 and β-Ga2O3, it is proposed that the disordered or defective structure contributes to the improvement of photocatalytic activity to some extent. Therefore, it is significant to develop the photocatalyst with a stable structure and a certain number of defects at the same time. © 2018 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
ACS Omega
ISSN: 2470-1343
Year: 2018
Issue: 10
Volume: 3
Page: 14469-14476
2 . 5 8 4
JCR@2018
3 . 7 0 0
JCR@2023
ESI HC Threshold:209
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 41
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: