Indexed by:
Abstract:
The superior capability of gemini surfactant (GS) in the preparation of hierarchically porous carbons via high-internal-phase emulsion (HIPE) template followed by pyrolysis was confirmed in this work. Polymerized HIPEs (polyHIPEs) of phenol-formaldehyde resin were prepared by cross-linking the continuous phase of HIPEs stabilized by GS. Nonionic surfactant and cationic surfactant were also selected to stabilize HIPE for comparison. From scanning electron microscope observations, polyHIPEs with open-cell pore architectures were obtained with GS as emulsifier (polyHIPEs-GS) and the derived carbon foams (carboHIPEs-GS) well retained the original pore architectures, whereas polyHIPEs obtained using contrastive surfactants showed closed-cell porous structures and notable differences were observed for the derived carboHIPEs. Nitrogen adsorption/desorption measurements indicated that polyHIPEs-GS and carboHIPEs-GS both exhibited hierarchically porous architectures with much higher surface areas (SA) than those of the corresponding contrast samples. Mercury intrusion porosimetry results indicated that carboHIPEs-GS possessed higher SA and higher porosity than that of the contrast samples. The open-cell pore architecture and high SA are favorable to many applications, like energy storage. carboHIPE-GS expectably showed a higher capacitance than that of contrast samples when used as the electrode material of supercapacitor. © 2018 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Langmuir
ISSN: 0743-7463
Year: 2018
Issue: 40
Volume: 34
Page: 12100-12108
3 . 6 8 3
JCR@2018
3 . 7 0 0
JCR@2023
ESI HC Threshold:209
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: