Indexed by:
Abstract:
This paper presents a low power, energy-efficient precision CMOS temperature sensor. The front-end circuit is based on bipolar junction transistors, and employs a pre-bias circuit and bipolar core. To reduce measurement errors arising from current ratio mismatch, a new dynamic element-matching mode is proposed, which dynamically matches all current sources in the front-end circuit. The first-order fitting and third-order fitting are used to calibrate the output results. On the basis of simulation results, the sensor achieves 3σ-inaccuracies of +0.18/-0.13 °C from -55 °C to +125 °C. Measurement results demonstrate sensor 3σ-inaccuracies of -0.2 °C from 0 °C to +100 °C. The circuit is implemented in 0.18 μm CMOS, and consumes 6.1 μA with a 1.8 V supply voltage. © 2018 by the authors.
Keyword:
Reprint 's Address:
Email:
Source :
Micromachines
ISSN: 2072-666X
Year: 2018
Issue: 6
Volume: 9
2 . 4 2 6
JCR@2018
3 . 0 0 0
JCR@2023
ESI HC Threshold:170
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: