• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

蒋佩卿 (蒋佩卿.) [1] | 吴丽君 (吴丽君.) [2] (Scholars:吴丽君)

Indexed by:

CQVIP

Abstract:

二值化卷积神经网络作为一种量化模型,具有模型体积小、运算效率高等显著优点,是卷积神经网络模型在低功耗嵌入式端部署的理想形式.本文分析了二值化卷积神经网络的特点,提出了针对批归一化层及二值化层改进,设计出了无需乘法运算单元的二值化卷积神经网络硬件架构并在FPGA平台上实现.结果表明,在运算量相同情况下,该设计在工作频率150 MHz下相比i5-7500 CPU实现了约9.7倍的加速,相比1080 Ti GPU实现了1.7倍的加速,而功耗仅为CPU的21%、GPU的5.6%.

Keyword:

FPGA 二值化 卷积神经网络 改进的批归一化

Community:

  • [ 1 ] [蒋佩卿]福州大学
  • [ 2 ] [吴丽君]福州大学

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

电气开关

ISSN: 1004-289X

CN: 21-1279/TM

Year: 2019

Issue: 6

Volume: 57

Page: 8-13

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 3

Online/Total:170/10112962
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1