Indexed by:
Abstract:
二值化卷积神经网络作为一种量化模型,具有模型体积小、运算效率高等显著优点,是卷积神经网络模型在低功耗嵌入式端部署的理想形式.本文分析了二值化卷积神经网络的特点,提出了针对批归一化层及二值化层改进,设计出了无需乘法运算单元的二值化卷积神经网络硬件架构并在FPGA平台上实现.结果表明,在运算量相同情况下,该设计在工作频率150 MHz下相比i5-7500 CPU实现了约9.7倍的加速,相比1080 Ti GPU实现了1.7倍的加速,而功耗仅为CPU的21%、GPU的5.6%.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电气开关
ISSN: 1004-289X
CN: 21-1279/TM
Year: 2019
Issue: 6
Volume: 57
Page: 8-13
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: