Indexed by:
Abstract:
Cellular metals with the large surface/volume ratios and excellent electrical conductivity are widely applicable and have thus been studied extensively. It is highly desirable to develop a facile and cost-effective process for fabrication of porous metallic structures, and yet more so for micro/nanoporous structures. A direct-flame strategy is developed for in situ fabrication of micron-scale cellular architecture on a Ni metal precursor. The flame provides the required heat and also serves as a fuel reformer, which provides a gas mixture of H 2 , CO, and O 2 for redox treatment of metallic Ni. The redox processes at elevated temperatures allow fast reconstruction of the metal, leading to a cellular structure on Ni wire. This process is simple and clean and avoids the use of sacrificial materials or templates. Furthermore, nanocrystalline MnO 2 is coated on the microporous Ni wire (MPNW) to form a supercapacitor electrode. The MnO 2 /MPNW electrode and the corresponding fiber-shaped supercapacitor exhibit high specific capacitance and excellent cycling stability. Moreover, this work provides a novel strategy for the fabrication of cellular metals and alloys for a variety of applications, including catalysis, energy storage and conversion, and chemical sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Keyword:
Reprint 's Address:
Email:
Source :
ChemSusChem
ISSN: 1864-5631
Year: 2018
Issue: 5
Volume: 11
Page: 985-993
7 . 8 0 4
JCR@2018
7 . 5 0 0
JCR@2023
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: